50000#OtCnt %PC 0#EndCr 0.97n4 2n3 0n1 1gLxgLy hFFFFFF#PBClr 1#PGrSz 10#PFnSz
gS 0gC 0.97n4 1n3 180n1

0n1 0.01n3 :L20 N1gx 0gy gP N3ni1 1.25zN1<_G20_;    Y軸
0n2 0.01n3 :L21 0gx N2gy gP N3ni2 0.87zN2<_G21_;    Z軸
-0.3n1 0.005n3 :L22 N1gx N1*2 =gy gP N3ni1 0zN1<_G22_; X軸

0n1 0.01n3 :L23 N1gx N1*-0.58 + 0=gy gP N3ni1 0.85zN1<_G23_;   √x^2+y^2
-0.25n1 0.01n3 :L24 N1gx -0.5gy gP N3ni1 0.85zN1<_G24_;     y
-0.25n1 0.005n3 :L25 N1+1.1=gx N1*2 =gy gP N3ni1 0zN1<_G25_;   x
-0.47n2 0.01n3 :L26 0.85gx N2gy gP N3ni2 0.25zN2<_G26_;     z
0n1 0.01n3 :L27 N1gx N1*-0.58 + 0.73=gy gP N3ni1 0.85zN1<_G27_; √x^2+y^2上
0n1 0.01n3 :L28 N1gx N1*0.275 + 0=gy gP N3ni1 0.85zN1<_G28_;   L
-0.25n1 0.01n3 :L29 N1gx N1*0.658 - 0.328=gy gP N3ni1 0.85zN1<_G29_; √y^2+z^2
0.85n1 0.01n3 :L30 N1gx N1*-0.95 + 1.04=gy gP N3ni1 1.1zN1<_G30_;   √x^2+z^2

0.195n1 0.005n3 :L70 N1gx N1*1 - 0.18=gy gP N3ni1 0.25zN1<_G70_;  α矢印右
0.25n1 0.002n3 :L71 N1gx N1*-2 + 0.57=gy gP N3ni1 0.275zN1<_G71_;  α矢印左
0.135n1 0.001n3 :L72 N1gx N1*-10 + 1.5=gy gP N3ni1 0.145zN1<_G72_; γ矢印右
0.07n1 0.01n3 :L73 N1gx N1*-0.5 + 0.12=gy gP N3ni1 0.14zN1<_G73_;  γ矢印左
0.385n1 0.005n3 :L74 N1gx N1*-1 + 0.5=gy gP N3ni1 0.44zN1<_G74_;  β矢印右
0.365n1 0.002n3 :L75 N1gx N1*4 - 1.42=gy gP N3ni1 0.384zN1<_G75_;  β矢印左

-0.15n1 0.02n3 :L42 0.5*N1s=n2*N1c + 0.0=gx N2*N1s- 0.2=gy gP N3ni1 0.82 zN1<_G42_; 角度α
0.57n1 0.01n3 :L43 0.2*N1s=n2*N1c + 0.3=gx N2*N1s- 0.05=gy gP N3ni1 1.1zN1<_G43_;  角度β
0.94n1 0.01n3 :L44 0.3*N1s=n2*N1c + 0.0=gx N2*N1s- 0.15=gy gP N3ni1 1.58zN1<_G44_;  角度γ


gE :: 9gC 0j;立体座標図1
12#PFnSz 0.1gx 1.2gy 0gJ 0j;O
10#PFnSz 0gC -0.1gx 0.1gy 0gJ 0j;α
-0.02gx -0.051gy 0gJ 0j;β
0.45gx 0.14gy 0gJ 0j;γ
0.05gx 0.285gy 0gJ 0j;L
0.55gx 0.3gy 0gJ 0j;x
-0.4gx -0.41gy 0gJ 0j;y
1.12gx -0.01gy 0gJ 0j;z
-0.12gx 0.8gy 0gJ 0j;xy
0.35gx -0.25gy 0gJ 0j;yz
0.41gx -0.04gy 0gJ 0j;xz
0.98gx 0.25gy 0gJ
5000#OtCnt E :E

cosα = x/L  cosβ = y/L  cosγ = z/L

x^2 + y^2 + z^2 = L^2×[(cosα)^2 + (cosβ)^2 + (cosγ)^2 ]

y^2 + z^2 = x^2 + L^2 - 2xLcosα = x^2 + L^2 - 2L^2×(cosα)^2
x^2 + z^2 = y^2 + L^2 - 2yLcosβ = y^2 + L^2 - 2L^2×(cosβ)^2
x^2 + y^2 = z^2 + L^2 - 2zLcosγ = z^2 + L^2 - 2L^2×(cosγ)^2

x^2 + y^2 + z^2 = 3L^2 - 2L^2×[(cosα)^2 + (cosβ)^2 + (cosγ)^2 ]
L^2×[ ] = 3L^2 - 2L^2[ ]     3L^2×[ ] = 3L^2
(cosα)^2 + (cosβ)^2 + (cosγ)^2 = 1

3EAG1

[ 2007年, 2009年 ]
    

前のページ ATHPトップページ